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Abstract ’ .

The application of the mode approximation technique to a fully clamped
plate is here described. Mode solutions for finite deflections are obtained
from a sequence of instantaneous modes. Master solutions for chosen initial
velocity amplitudes are constructed in nondimensional form. These depend
weakly on a parameter of viscoplastic material behavior and size of structure,

; and so can be applied to a variety of loadings and structures. Finding each
instantaneous mode shape and acceleration constitutes an eigen-problem, solved
by finite elements with iterations. Comparisons with recent tests on steel

and titanium plates are discussed in some detail.
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by Office of Naval Research under Contract N0001lu4-75-C-0860.
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1. Introduction

The "mode approximation" techniaue, sugpested first for impulsive loading
of rigid-perfectly plastic structures at small deflections [1], must be modified
if conditions of many practical problems are taken into account. In particular,
plastic rate dependence and effects of large deflections make the oririnal ap-
proach unrealistic. The clamped circular plate is a case where thc behavior
becomes markedly different as finite deflections are reached, flexural changing
to membrane action. Due to the increase in stiffness the final deflections and
response times may be reduced by an order of magnitude. A further large reduction
may be caused by plastic strain rate sensitivity, as exhibited by mild steel,
commercially pure titanium, and some other metals.

A way of extending of the mode technique to take account of finite deflections
for nonlinear viscoplastic material, was suggested in [2] and applied to a simple
model with two lumped masses. This made use of a representation of viscoplastic
behavior by constitutive equations of homogeneous type [3] (without a yield con-
dition), which are a conservative approximation and greatly simplify the analysis.
The first application to a structure treated as continuous was to a clamped cir-
cular plate [4]. The present treatment extends that of [4] and includes dis-
cussion of comparison with recent test results [5].

Large deflection viscoplastic problems of dynamically loaded structures are
not simple. Full details of the response are obtainable only by numerical
methods ; unfortunately these are still far from uniformly reliable. Neither
are ad hoc short-cut methods, which can always be devised. The mode approach
extended to large deflections by the use of instantaneous mode solutions, offers

both practical and conceptual advantages.
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¢. Concepts and Lguations
The mode technique in both its initial and extended forms makecs use oF
"general integrals" which satisfy all the field equations (dvnamics, kimematic:o,

material behavior, and boundary fixing conditions) but which do not In senerzl
agree with the stipulated initial field of velocity. In narticular, we mav
look for such a full solution in mode form, so that the wvelocity, for exam.ie,

is written as
. }'t .
ui(x, t) = U(t)e, (x) (1

where U(t) 1is a scalar function of time and ¢. is & wector-vaiuec functior

of the space variables x , with 1= 1,2,3. The quantity Ulx mav pe ce-

ot

o

fined as the velocity magnitude of particular interest, wi normalizec
accordingly.

For a quite general class of material behavior expressible b ecuations
relating stress to strain rate, a convergence principle nolds [£] for anv twc
full solutions of the field equations. In particular, tne actual solution
&i(x. t) , which satisfies specified initial conditions, approacnes & sclutlion

in the mode form of Eq. (1), in the sense that the functiomal A(x) 1= non-

laereasing , where

- l ( l‘) n’c( t)] _ 1 (. .:‘:)(.‘ :‘-) - -
ALE) = A Yy Ky B ui Xy 5 pluy - u)(u, - u.) d (2
Vv
dA ‘l . oi“
2L g - " - dVv 0 (2)
at (01 ()JI)(qj qi) £

i
)
:
:
i
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where the integral covers the whole structure, p is the mass density; Oi,aj
are peneralized stress and plastic strain rate respectively in the actual solu-
tion, and Q;‘ ’ é; the corresponding quantities in the mode solution.

The initial value U° = U(0) of the scalar time function in Eq. (1) is
arbitrary, as far as the above properties are concerned. It can be chosen so

as to minimize the initial value a° A

2° = 4(0) = ;-I PRS- 0o X2 - 0%,) av )
A

This is a minimum when

I pﬁ§¢idv
0 _ 0 _’v
0% =00 s T —rn (5)
o¢i¢idV
v

Note that the functions oi(x) are properties of the structure, determined

from the field equations and boundary conditions. When U° is chosen accord-
ing to Eq. (5) the two solutions not only approach each other but often become
identical after an initial period. This means that if the final deflections

are determined by integrating the mode solution Eq. (1) with initial amplitude
given by (5), the error in the major final deflection is generally much less than
that in initial velocity [1].

Solutions with the separated variable form of Eaq. (1) can be found if the
equations of dynamics and kinematics are linear and the constitutive equations
are homogeneous. The latter requirement can be met by the use of homogeneous
"yiscous" relations [3] - which include rigid-perfectly plastic behavior as a
limiting case - but the treatment of finite deflections requires nonlinear terms

in the field equations which make it impossible to find a mode form solution

= PR S .




in the sense of Eq. (1); these equations imply that the shape functions °i(x?)
hold throughout the response. In contrast to these ''permanent'" mode solutions,
"instantaneous" mode solutions may be found which satisfy the field equations

with current deflections regarded as known and fixed, and for a given measure

of velocity magnitude. First defined in connection with applications of the | |1
mode technique to a structure of rigid-viscoplastic material, considering small |
deflections [7,8], they provide a means of extending the technique to large de-

flections [2,4]. Although the convergence theorem Eq. (3) holds only for small

deflections, the concept of starting the mode solution with amplitude given by

Eq. (5) remains valid. The subsequent deflections of the solution started in

this way, with initial mode shape and acceleration obtained from the small de-
flection equations, may be obtained approximately by fitting together a sequence
of instantaneous solutions. This procedure will be outlined now for the cir-
cular plate problem.

The plate deformation is defined by displacement components w , u and
by generalized stresses Mr . Me , (bending moments) and Nr . Ne (in-plane
forces), referred to radial and circumferential coordinates r» , 6 , Fig. 1.
The plate has radius R , thickness H . We take its material behavior to be
described by stress-strain rate relations appropriate for strongly rate sensitive
materials with constants determined from stress-strain tests at constant strain
rate. In terms of uniaxial stress o at a fixed plastic strain level and cor-

responding strain rate € s it is assumed that such data can be adequately rep-

resented by the equation

, €30 )

o €
—_— = + -
o A [ b
(o} €




where o, » € » D are experimental constants which depend on the chosen plastic

strain magnitude; in the case of mild steel, % is conveniently taken as the

lower yield stress. The experimental constants 9, » éo , n are used to derive

the constitutive equations in terms of generalized stresses and conjugate strain

rates. As will be outlined subsequently, we adopt a sandwich plate model for I
this derivation, assuming a generalization of La. (6) to describe the plane stress |
behavior in the two sheets, whose spacing is taken as h = H/2.

Strain rate components Kn o Ko (curvature rates) and ér 3 ;:e (middle

! ! ‘ surface extension rates) for "moderately large" deflections are taken as follows:
3- 2-
g B a_"_z Ee = - %8_"_ (7a)
atar r Jrdt
2- - 2- -
| paSy el g L 1d ()
! 9tdr  9r Jtadr r It o

It is convenient to define dimensionless strain rates as

| ; . E. L]
. r . e . . (3]
€P=T—’ Eez':_'s nr=‘.“r", no=.- (8)
Ko Ko eo Co
; 2¢, b
where e o In terms of dimensionless displacements and other var-
{ iables, these are
. T
" "s Sl (%9a)
- _4Ru .
ne s OF (9b) |

et oo Il . i el RO NPORR—




. 2 . 3 — i
t =R/ . - a = 8€oR Y 8€oR // %ﬂ_ (10a,b)
g H2 o j

where f = af /3t , £' = 3f/3r , and p is the mass per unit volume.

With this definition of reference time T , the equation of energy dissipation |

rate is

1
-] (ww + uu)rdr = a (mrk;p s N mecB + ne"e) rdr (11)

(o]

where we have defined dimensionless stresses as

Hr Me Nr NO
ok el B b R oo TR G Bz}
(o] o (o] o

with Ho = 00H2/u 3 No = OOH ; these are fully plastic bending moment and

axial force per unit length, respectively, corresponding to the stress G defined

in Eq. (6).

Consistent with Eqs. (11) and (9), the equations of dynamics are

(rmr)" - mé + 2(rnrw')' = rw (13a)
u (13b)

H
¥rm LS
(rnr) ng = gy ™

with boundary conditions | 3




|
|
{
¢
|8

w(l,t) = w'(1,t) = O (1ua) B
a(0,t) = u(1,t) = 0 ' (14b) : ’
m (0,t) = m(0,t) (1tc) :

Finally we write suitable constitutive equations. We want these to
represent the main features of rate sensitive plastic behavior and to reduce
to rigid-perfectly plastic behavior as a limiting case. Strain rate test data |4
of the metals of present interest can be quite accurately represented by Eq. (6).

As already mentioned, a sandwich model is used to derive the stress-strain rate

relations for our plate, based on this behavior which is readilv generalized
(following Perzyna [9]), adopting a Mises yield condition for plane stress. Use

of a sandwich model, with constants so that both simple bending and simple ex~ g
tension of the uniform plate are correctly described, is an artifice which sim-

plifies the equations and is conservative. A further simplifying and conservative
artifice is the use of homogeneous stress-strain rate relations. Thus the gen-

eralized form of Ea. (6) for plane stress is

. 1/n!

g gle,)

a%—= -—.-B~— 2’% (15a)

(o] € de
o o
whem . 2 c2 o o '2 1/2
g(eB) &g AEE. PEL) (15b) .
/3 r r 0 0 ]

and a , B take values r or 6 . The new constants oé , n' are found from .

the experimental constants o s € 5 N SO that the homogeneous replacement of

Ea. (6) has common stress and derivative do/de at a chosen strain rate. These




matching conditions make the homogeneous forms an accurate and conservative

replacement [2,3]; they are obtained by taking n' = vn , 9, o, wiere
L A Gi/" ol b Gi/“
VS —3F o s —i= — (16a,b)
n =3/n 3 9, l/vn 2
fo) o
where
F = nle
- g(cu)

and Eu denotes the strain rate §tate at which the matching is made. (Errors
due to these and other idealizations and approximations are discussed in a later
section). From Eqs. (15) and (16) the sandwich beam model leads to equations
which allow the generalized stresses 0‘] to be derived from a potential function

of strain rates ;Lj ;5 we write

. et Ol ietyed s Uy 1+1/n' 1+41/n'
B e [& L ] ik
3

where Q].-'(mrQnr’me’ne); qj=(ér,nr,€9,;le)

and
B

2 . . 2 . . .
X4 =/§ ul}r t Er) +(n 2 E)(ng £ £ (ng ¢ 56)2 (18)

Conversely, the strain rates may be derived from a potential function of

°s

the stresses !(Q].). Further details are given in [4] including illustrations

of surfaces '(Q-j) = constant for our problem.




We now look for a solution in mode form, and write the velocitv components

as

wir,t)

Wy ()8, (1) (19a)

u(r,t) = wy(6)e,(r) (19b)

E | We take ¢l(0) =1, so that ﬁﬁ(t) denotes the velocity (nondimensional) of |
the midpoint of the plate. Because the strain rate-velocity expressions are : 3

linear in the velocities and the stress~strain rate relations are homogeneous,

we can write the latter in compact form as

ﬁ* 1/n'
Q. = u[ ] Bh,k_j (20a)

®|

where i, §j = 1,2,3,4, and summation over a repeated suffix is implied,

(21b)
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In terms of these quantities the enerpy rate equation is

1
SEE J Biikikirdr
L}
_w*”[&_]n $
a
g 2 2
{ (¢] + ¢,)rdr
o
The dynamical equations (13) take the forms

1

"'.'. n' " ' NS e
u[ a:_] EPBz_ikj) - (B3jk‘]) + 2(r32ik'jw )] = m*¢l

(214) )g

(22)

(23a)

(23b)

Inspection of Eqs. (23) shows that if w'(r,t) is either zero or treated

as known and independent of time, the equations are separable into three ordinary

differential equations

% 1/n'
- wfe
W, = Au[;aJ

Ll[¢l, ¢y > w'] + hrg, *= ©

H
. LLéy 5 &y » W'+ g Are, = O

RS TRS T

(2ua)

(24b)

(24¢)

where Ll » L2 are the expressions in brackets on the left hand sides of Ln.

(23a) and (23b), respectively, and A is a constant. FEvidently if w'(r,t) is
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T T ——
.

taken as fixed we have a nonlinear eigen-problem in which the constant A is
the eigenvalue, and the shape functions ¢l(r) h ¢2(r) are eigenfunctions. ’

Note that A is given by the quotient in brackets in Fa. (22) in terms of

¢l 2 ¢2 L andw"

How to obtain a mode form solution from a sequence of instantaneous modes

can now be seen. The solution starts with a choice of initial value G: = Q*(O).
At t = 0 the deflection field and slope w'(r,0) are zero. The initial mode i

| from solution has ¢2(r) =0, and ¢l(r) can be found without difficulty (4,107, |4

together with the corresponding value of A . The secular equatijon Eq. (2ua)
can readily be integrated if A is held constant, to provide a roush '"small
deflection'" solution.

A much better solution for finite deflections is obtained as follows. Sup-
pose at time t the eigen-problem has been solved, giving Q*(t) s e (t),
<t> <t>

6.(r) , ¢!'(r) , the deflection w(r,t) , and slope w'(r,t). Approximate de-
1 1

flection and slope fields at t + At are

3 <t> 1 2 <t>
w(r, t+at) = w(r,t) + (at)w (), (r) + 5(at) We(t)e, (r) (25a)
5 <t> 1 2 <t>
w'(r,t48t) = W lr,t) + (A)w (1)e](r) + S(A) T, (t)e) (r) (25b)

With the approximate field w'(r,t+At) given by Ea. (25b), the eigen-problem

for t 4 At can be solved, furnishing approximate values of Q*(t+At) 4

b <t+At>  <t+At>
w, (t+At) , ¢l(r) 3 ¢i(r) , etc. With these, better approximations can be

written as
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<t> <t+At>

Wle,tHt) = wlr,t) + 20A0) (W, (£)6, (0) + ¥y (t+at)s, (r) (26a)
1 5 <t> . <t+At>
w'(r,t+At) = w'(r,t) + §(At) w*(t)¢i(r) + wﬁ(r+At)¢i(r) (26Db)

This process can be repeated until steady values are rcached. It is started
at t =0 when w(r,0) = w'(r,0) = 0.

An eigen-problem must be solved for each field w' in this process. In
[4] this was done by an iterative scheme, in which the terms of higher order
derivatives in Eqs. (13) were written as functions of the lower order terms,
and integrated numerically over the radial coordinate. This gsave an essentially
exact solution at small computer cost when there was no difficulty with conver-
gence, as was the case at small magnitudes of &g . At larcer values of QZ -
such that the central deflection exceeded about 4 thicknesses, the acceleration

magnitude exhibited poor convergence, althougsh the deflections showed little

change with increased numbers of iteration cycles. An alternative nrocedure

using finite elements was therefore devised, taking cubic and linear expres-
sions for 01 and ¢2, respectively, in each element. Iterations were
required to obtain the unknown slope w' in various matrices. Some diffi-
culties with convergence still occurred at the largest deflectionms.

We have emphasized here the determination of mode responses, i.e., the in-
tegration of the field equations of the structure whose starting velocities have

the form of the initial mode shape (appropriate to zero deflections and to the
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chosen initial velocity amplitude), and which reach large deflection magnitudes
in the course of the response. We have outlined an approximate integration
technique using a sequence of instantaneous modes (each appropriate to the cur-
rent deflections and velocity amplitude). This technique appears promising as

an efficient and flexible scheme to obtain the final deflections and the duration
of the motion, among other quantities. Other methods may be used, of course,
including numerical codes if available.

To obtain the mode solution which provides the best approximation for a
particular problem, for which an initial transverse velocity field V(r) is
prescribed, the amplitude G: of the initial mode velocity field must be found
by the minimizing technique expressed by Eq. (5): using nondimensional variables,

1 1
Q: = §°(r)¢lrdr ¢irdp (27)

o o

where w'(r) = V(r)(2t/H), using the reference time 1 defined in Eq. (10a), is
the prescribed initial velocity field in nondimensional form. The integration
in dimensionless variables can be carried out if the parameters a , n , and R/H
are specified, where a is defined in Eq. (10b) and n implicitly in Eq. (6).
It is seen that o depends on the size R as well as the shape R/H of the

structure and on the material constants BV il

In principle, such an integration to obtain the mode response should be

repeated for each case of interest, i.e., for each V(r) , R, R/H , T
etc. When an assessment of deformation for severe pulse loads is required, there
are often many uncertainties about the loading intensity and distribution over
the structure, and about the structure itself, particularly concerning its mat-

erial behavior at high strain rates. Hence one wants not an isolated calculation

but curves showing how the deformations depend on various parameters as they vary
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over appropriate ranges. The mode approximation techniauc is particularly

suited to looking at variations over such ranges with a minimum of calcul-

ations.

A set of mode responses in nondimensional form, giving for example a curve
of final deflection ratio wi/H as a function of initial mode velocity ampli-
tude ﬁg, for "representative" values of a, n, and R/H, provides a sort
of '"master response function" from which a considerable range of particular
cases can be examined with trivial further calculations. This is due partly to
the basic device of the mode approximation concept of matching mode amplitude
to an arbitrary initial velocity field as in Egqs. (5, 27), and partly to the
insensitivity of the nondimensional mode solution to various parameters. In
particular, the solution depends very weakly on a, since o anpears in the

1/n*

equations only as a (where n' 1is usually in the neighborhood of 10).
<0>

Finally, the initial mode shape function ¢l(r) = ¢(r) 1is insensitive to the

initial amplitude ﬁ: as well as to a. These points, which are important

for practical use, are illustrated below.

3. Application to Tests

In tests [5] on fully clamped plates of mild steel and titanium, explosive
loading was applied by detonating a disk of explosive sheet (Detasheet) fixed
centrally on the plate and separated from it by a buffer pad of styrofoam, Fig.
2. The total impulse applied to the plate was measured in each test by a bal-
listic pendulum. It was assumed that velocities V(r) were imposed, such that

vir) = Vo for 0 ¢<r < a

(28)
V(r) =0 for as<r <R

where a 1is the radius of the disk of explosive. Further it was taken that

W s (23)
2
na llp

..

-~
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where I is the measured impulse, and p is the mass density of the plate of 14
thickness H . This assumes that reaction stresses in the plate are negligible ’
during the pulse, and that the explosive pressures are uniform inside radius a K|
and zero outside. It is further assumed that the pressure pulse is so short e
that it can be treated as a pure impulse. The expression for initial mode ve- 1
f |4
locity amplitude then gives the relation |
]
el a/R 1
* 2 < a &
;’— = ¢lrdr ¢1rdr = [-ﬁ-] (30)
2 o ‘o
k.
where ‘.'o = %— Vo . From this definition, combined with Eqs. (10a) and (29),
we obtain the relation
|3
w =2 /2, 272 Rl k
; (o] H 00 [o] o H262'/55: (31)

Suppose now the final midpoint deflections wf:/H of the mode response have
been computed as a function of initial mode amplitude wg , for suitable values
of a ,n, and R/H . Figure 3 shows two such "master" solutions for steel
and titanium plates, using numerical values in Table 1. Fig. 4% shows nondim-
ensional curves of mode velocity amplitude as function of time. From the curves 1
of Fig. 3, Eqs. (30)and (31) enable us to obtain curves of deflection as function
of applied impulse I for any assumed impulsive pressure distribution, and to as- {3
sess the importance of uncertainties in the material and geometrical descriptions. | 3
The procedure is inverse; rather than specifying the impulse and determining the
corresponding deflection, the latter is chosen first. The ratio wg/H determines

\;: from the appropriate curve of Fig. 3. The value of ;'o is then obtained

from Eq. (30) for the specified ratio a/R of the impulsive loading. In prin- |

. 0 ,* i s
ciple, the ratio w,,,/wo depends on w: » since the initial shape function

— -
e 4/ 2 ¥
2. D s il e Nk U il bt el iR i <
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: Table 1
Steel Titanium
- e 4
Strain Rate Constantl o, psi 32,'&002 36,400 at eP = 1% 3
(35,200 long., 37,700 trans.)
38,500 at € = 2%
(37,800 long., 39,200 trans.)
Strain Rate (!cmst.‘-.\nt:L Eo sec 40 120
Strain Rate (:ons‘can‘t1 n 5 S
2, -u -3 =3
Mass Density p 1b sec in. 0.73 x 10 0.42 x 10
Plate Radius R in. 1.25 1325
' , .
Plate Thickness H in. 0.076 0.032
: % ’ (Average)
8R3 E.: 39_
2 o/ a a 23.0 33.8
H o
;":
s Ips used in Eq. (3).
E 1§ .
1 ‘i 2| ower yield stress.
2 |
’,
g
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¢l(r) for the viscoplastic material depends on the initial velocity as well
as material parameters. In fact, the dependence of ¢, on G: is found to
be exceedingly weak, and a single curve for each plate can be drawn showing
5:/&0 as a function of a/R. These are plotted in Fig. 5. The two curves
are indistinguishable over most of the range, showing that the initial shape
function ¢l(r) is insensitive to all the parameters. Writing Q*/ﬁo as
J(a/R) from Eq. (30), we find I from Eq. (31) as

2 2
(o [ o) S &
AV’T )

Obviously the same procedure for obtaining the deflection as function of im-
pulse (both in physical units) can be carried out for any assumed initial velocity
form V(r).

Suppose now we wish to examine possible variations in some of the physical
parameters assumed in the above calculation. There are many quantities whose
values are uncertain. For example, in the calculation we have assumed the in-
itial impulsive pressures to give rise to uniform velocity V° inside a cir-
cle of radius a and zero velocity outside this radius, with a taken as the
radius of the disk of explosive sheet. Series of tests were conducted with
nominal a/R = 1/3, 1/2, and 1. The test arrangement as sketched in Fig. 2
makes it evident that the actual loading area must differ from the nominal one;
there must be a '"shadow effect" due to the buffer pad. (In practical problems
of explosive loading on structures, as opposed to laboratory experiments, far
more uncertainty than this would be expected). Other somewhat uncertain quan-
tities are the parameters of strain rate sensitivity O, » D s éo , obtained
from stress-strain tests over a range of strain rates. These pertain to a

fixed plastic strain magnitude, which should be chosen so as to conform

bl e s s s o _AJi‘

= SRR
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reasonably well with the actual maximum strains. (For mild steel we have used

<4,-,_ .
B
H
14 ¥ e

the lower yield stress, rather than stress at fixed plastic strain). As '"nom-
inal" value for the titanium plates we took & » 36,000 psi corresponding to
1 percent strain.

The sensitivity of an estimated impulse-deflection curve to moderate changes
in the parameters a/R and o, can now be examined simply by changing either '
of these quantities in evaluating I from Eq. (32). Thus the effect of changing a
a/R by 20 percent (from 0.33 to 0.40) is obtained by reading a new point for

J(0.40) from the curve in Fig. 5. Since both a2/R2 and J(a/R) increase, and

I depends on their ratio, the effect is small. This is illustrated in Fig. 6
together with test results, to be discussed later. Sensitivity to a change in
the magnitude 9, is of less interest for steel than for titanium whose strain
hardening slope is larger [5]. If the fixed plastic strain level is taken as

2 percent rather than 1 percent, the appropriate average value of e is about
39,000 psi. Equation (32) shows that I is proprotional to /5; 3 the small
change is shown by the shift in the curve in Fig. 7 when 36,000 is replaced

by 39,000. Note that the parameter a is changed by a like amount, but the
effect on the "master response curve' of a 4 percent change in a is effectively

zero, because of the weak dependence already mentioned.

4. Comparison with Experiments

The experiments reported in [5] were planned so that the concepts and as-
sumptions of the extended mode approximation technique could be checked directly.
The intrinsic error in the estimation of deflections of the fully clamped plate
is represented by Eq. (30) for initial velocity distributed as in Eq. (29); eq-

uivalent expressions for G:/Qo _for other types of velocity pattern are readily

- > Mo
M.,.P.‘.ﬂ_ AR b OO e il SR Nl T
s 8k i e
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derived. The plot of G:/Go in Fig. S5 shows that this ratio is positive or
negative as a/R is larger or smaller than about 0.47. For impulsive pres-
sures over the whole plate (a/R = 1) the error is positive (conservative),
while for a/R = 1/3 the error is negative since &g/ﬁo is about 0.6. For
a/R = 1/2, the intrinsic error should be nearly zero.

The tests used nominal values of a/R equal to 1/3, 1/2 and 1, using
steel and titanium plates, and impulse magnitudes such that final deflections
up to more than six thicknesses were produced. Examples of these test series
are shown in Figs. 6-11, where Fig. 9 shows a typical final deflected shape and
Figs.10,11 show examples of response times as function of impulse, in two series
of tests. More results and details of the materials and techniques are given
in [5].

The plots of final central deflection as function of impulse in Figs. 6-8
illustrate the results for the three nominal a/R values. If no other important
idealization or error were involved, the full curves showing deflection esti-
mates from the finite-deflection mode theory would show the intrinsic error;
for a/R =1/3 and 1 the estimated deflections would lie below and above the
test values, while for a/R = 1/2 the estimates would be close to the observed

values. No such trends are observed. Fig. 7 (for a/R = 1/2) shows test deflec-

tions substantially smaller than the mode theory prediction. For a/R =1,

the observed deflections lie above the predicted curve, while for a/R = 1/3
they lie below, the reverse of the intrinsic error. (In these curves the curves
labelled ''small deflection' are from simple bending theory, and exhibit much
larger errors).

These anomalous results point to the importance of other error sources.

There are two kinds. "Experimental' errors are ones in which one or more as-

sumed conditions of the tests are not met. 'Theoretical" errors also are present,
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apart from the intrinsic error already discussed, because of various idealiza-

tions and approximations in carrying out the mode solution to obtain finite 1

deflections. ’j

Of the possible experimental errors only one is believed significant. The |
condition of full edge fixity was not satisfied in the tests where impulsive
pressures were applied over the entire plate (a/R = 1). The heavy clamping
frame sketched in Fig. 2 used eight 1/4 in. bolts. The friction forces on the | ]
clamped portion of the plate were adequate to prevent slipping at the smaller

loads used for a/R = 1/3 and 1/2, but in the tests with a/R = 1 inward dis-

placements at the specimen edge as much as 1/16 in. were measured. These led '$

to greatly increased deflections, as indicated by the curves for '"small de-

flections" in Figs. 6-8, from a theory assuming absence of membrane stresses.
The negative error of the estimated deflections by the mode technique shown in
Fig. 8 are due to swamping of all other errors by this failure in the assumed
constraint. We mention that the test series on titanium plates [5] also showed
anomalously high values of deflections in tests at a/R = 1, but the test points
fell slightly below rather than well above the mode response curves.

Turning to errors in the theory, we summarize below those expected due to
idealizations and approximations made in implementing the mode technique. Un-
like the intrinsic error already discussed, these are almost all positive (con-
servative) although in some cases the argument is conjectural. This seems un-

avoidable in discussing an estimation technique at this stage.

(a) Material Behavior
(1) Elastic strains are omitted as negligible compared with plastic
strains. For such a rigid-viscoplastic theory to be realistic,

an energy ratio criterion has been postulated. Here the ratio of

initial kinetic energy to the maximum elastic strain energy is




(2)

(3)

(%)

(5)
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greater than 10 for impulses greater than about 0.2 lb-sec, in
all cases. Since the criterion appears to be well satisfied for
all of the tests reported in [5], the error due to neglect of
elastic deformations should be less than 10 percent even for the
smallest impulses. This may be argued to be a positive error
when the load pulse is short, as here [11].

Constitutive equations are derived from a sandwich model with
separation between sheets half the uniform plate thickness H.
With this choice, the stress-strain rate relations are correct
for pure tension/compression and for pure bending, and conserva-
tive for general stress states in the sense that smaller stress
levels are required for a fixed dissipation rate.

A homogeneous viscous stress-strain rate representation is used,

without a yield condition, and matched to the viscoplastic form

in such a way that stress magnitudes are very close to tte "correct"

ones near an assigned strain rate, and always below them. The er-
ror is positive on this account [2,3].

The constitutive equations relate stress and strain rate states
explicitly, influences of strain hardening being implicit only.
With the choices we have made of fixed strain level (or of lower
yield stress in the case of steel) the error is positive. Its
magnitude can be estimated, as has been shown.

Strain rate history effects are neglected; the stress is written
as a function of instantaneous strain rate, and the constitutive
equations are derived from tests at approximately constant strain

rate. Strain rate jump tests [12,13] among others demonstrate

AP T
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thot the stress is not a function only of current strain and
strain rate, and some error must therefore arise. The inform-
ation from tests is meagre and the behavior is complex, so that
no firm statements can be made about the magnitude or sign of
the error. The present structural problems involve high strain
rates which are rapidly imposed by the dynamic loading and then
decrease to zero. It may be conjectured that the neglect orf
prior straining history leads to a positive error in the deflection
estimate, the stress levels being underestimated. (This follows
from interpretations of test data either by choosing plastic wo.k
as a state variable [14] or regarding dynamic recovery as the es-

sential process [15].)

(b) Numerical or Theoretical Approximations

(6)

(7)

The mode technique, as applied here to finite deflections, in-
volves a sequence of modal fields of velocity and acceleration
which do not fit together continuously except at the plate center,
where the mode velocity is ﬁ*(t). These mode form solutions
correspon®l to a minimum dissipation rate for a fixed kinetic en-
ergy [7,8,12], hence to slower deceleration magnitudes than the
actual solution. On this ground, the error resulting from the
instantaneous mode technique is expected to be positive.

The numerical determination of mode shapes and accelerations re-
quired iterations. At each stage first approximations were used
for the new deflection field and for the effective strain rate
(furmishing u and v); solution of the resulting eigen-problem

then led to improved values which were used to start a second

RSP S




(8)

(9)
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cycle, etc. Convergence was very slow at the largest deflections.
Ten iteration cycles were mainly used, except for a few trial cal-
culations. These were not enough at the largest deflection magni-
tudes, and the deflections so calculated are too large (decreasing
magnitudes being obtained by additional cycles). The finite ele-
ment form of the equations involves further errors of un-

known sign and magnitude. Thus the net error due to numerical
causes (at the largest deflections) is probably positive, but this
is uncertain.

The field equations include finite deflection terms which are con-
sistent but approximate, as in the von Karman plate equations. They
are strictly valid for moderately large deflections, but are ex-
pected to be very reliable for ali the deflection magnitudes con-
cerned here, where the maximum deflection is less than 1/5 the dia-
meter.

Finally, the explosive pressure pulse is treated as impulsive, i.e.,
delivering finite impulse with zero duration. This idealization in
which a single pulse of arbitrary shape is replaced by a pure im-
pulse, is known to lead to over-estimates of final deflections of
structures treated as rigid-perfectly plastic by small deflection
theory [17]. A simple model of this type gives the error as roughly
equal to the ratio of the pulse duration to the duration of motion
of the structure. Intuitively, similar results should hold true for
the closely related rigid-viscous or viscoplastic behavior treated
here, and for large deflection problems. The tests of [5] involve
pulses whose duration was estimated at less than 10 usec., so the pos-
itive error from the pure impulse idealization might be around 10 per-

cent.
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It is remarkable that the possible errors introduced by the idealization

h and approximations listed above are almost all positive. The exceptions are

items (7) and (8); there is no reason to suppose that these are predominant.
Again, no apology is made for the fact that the arguments about some of the er-
rors are conjectural. This seems unavoidable when one is trying to assess an
approximation technique by comparison with actual measured behavior of struc-
tures. One can hardly make rigorous statements unless one is dealinyg with
"exact" theory, or making comparisons with quantities furnished by a computer
program. Even then, rigorous statements may be illusory, given the fictional
nature of computer outputs.

Comparisons with measured response times are typified by the results shown
in Figs. 10 and 11. In the tests [5] a "condenser microphone' device was used to
obtain information about time history of deflection. This consisted of a brass
plate held on an insulated rod, with geometry as indicated in Fig. 2. Deflec-
tion of the plate caused roughly proportional capacitance changes, which were
recorded. Quantitative accuracy was not possible, but two times of interest
were obtained, namely the time to reach maximum deflection té , and the time
t; when the (estimated) permanent deflection magnitude was reached on the in-
itial rise of the signal. These two times are plotted in Figs. 10 and 1l as
function of test impulse, together with the time tf at which motion ceases
according to the mode approximation technique. According to this technique the
response time first increases with impulse, reaches a maximum, and then slowly
decreases. This behavior is readily understandable: at large deflections where
membrane effects dominate, the plate is much stiffer than in the simple bending
range. The response time then depends mainly on the maximum tensile forces
rather than on the impulse. Since the material is strain rate dependent, the

membrane forces increase with impulse and the response duration decreases. The
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particular test series shown for illustration in Fig. 11 shows this decrease
plainly. However, this is exceptional in that most of the similar plots in ’
(5] are similar to those in Fig. 10 which shows virtual independence of the

measured times with impulse. In all cases the agreement of test times with

the maximum response times given by the extended mode technique is quite good,

while the response times predicted by the small deflection theory have no

resemblance to the observed times.

5. Conclusions

We have reviewed the application of the mode approximation technique to ’i
estimate finite viscoplastic deflections of an impulsively loaded fully clamped
circular plate. The corncept of a "master solution" for a range 6f initial mode

velocity amplitudes, taking representative values of the dimensionless para-

meters, is shown to reduce the calculations to a minimum, and enhances the

efficiency of the method. Comparisons with tests on plates of steel and tit-
anium are made, and discussed with particular reference to possible errors in
the estimation technique. Certain errors are intrinsic in the method; others
occur as result of idealizations and approximations in implementing it. The
tests substantiate the expectation that the errors of the latter type are
predominately positive, i.e., tending to over-estimate the final deflections.

The intrinsic errors are either positive or negative, depending on the distri-
bution of impulsive pressure; they could not be identified in the test results,
apparently being outweighed by the other type. The tests show that the technique
as applied is conservative when the assumed edge constraint condition was sat-

isfied, and close enough to the observed deflections to permit confidence in

practical applications.
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Captions for Fipures

Notation for axially symmetric deformations - physical units.
Clamped plate as used in experiments [5].

- .
""Master response curves'" for steel and titanium plates. w*/H is
nondimensional final displacement at center, ﬁg = VQt/H is non-
dimensional initial mode velocitv amnlitude.

Illustrative curves of mode velocity amplitude versus time.

Ratio of initial mode velocity amplitude G: to specified initial
velocity magnitude &o (nondimensional), given bv mode technique.

Comparison of measured final displacement-thickness ratio from
experiments with predictions by extended mode technique and by
"small-deflection" mode technique; illustration for steel plates
loaded over central area of radius a = R/3.

Comparison of measured final displacement-thickness ratio from
experiments with predictions by extended mode technique and by
"small-deflection' mode technique; illustration for titanium plates
loaded over central area of radius a = R/2.

Comparison of measured final displacement-thickness ratio from
experiments with predictions by extended mode technique and by
"small-deflection'" mode technique; illustration for steel plates
loaded over whole plate area. Plates showed radial displacement at
edge due to sliippage.

Profiles of final deflected shane as observed in an experiment and
according to extended mode technique:; illustration of initial mode
shave function.

Comnarison of resnonse time nredicted by extended mode technique

with measured times, tg at peak displacement, tg at intercept

with rising displacement-time curve of line extending final deflection-
time curve; illustration for steel plates.

Comparison of response time predicted by extended mode technique with
measured times, té at peak displacement, tg at intercent with
rising displacement-time curve of line extending final deflection-
time curve:; illustration for titanium plates.
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